宋河每天坐在实验室角落,支起一张折叠小桌,闷头肝数学。
某大文豪曾在课桌上刻“早”字,宋河效仿,把邓浦和出的题目刻在桌上。
他每刷几篇数学论文,便看看桌上刻的题目,沉思良久,再刷新的论文。
还别说,名师给出的题目,确实有促进学习的效果。
宋河照着大概方向去学,感觉收获颇丰,升级速度很稳定。
【检测到数学进步,由宗师45级升至宗师46级!】
【检测到数学进步,由宗师46级升至宗师47级!】
到了宗师47级,他终于拿起笔,在桌面上尝试列写题目步骤。
“让M是D的准光滑超曲面空间,在加权射影空间中只有末端奇点……”
“由无穷小托雷利定理可得,1、3、7号族不满足题设要求……”
“GM变种是锥体在格拉斯曼量上的交点,G具有适当的线性空间,且一般全局截面为……”
写着写着卡住了,宋河丝毫不慌,做题过程中隐约又有一些灵感,照着灵感再去找论文。
很快,他锁定了一个之前没怎么读过的数学家。
考切尔!
伊朗裔数学家,菲尔兹得主,清华丘老数学中心全职教授。
宋河记得德维特的数学神仙群聊里也有这尊大神,但他不打算直接去向大神请教问题,先自学一波再说。
毕竟邓浦和布置的题目难度不算太高,为了这点小事儿去叨扰大神,堪比让备战高考的学生去做小学拼音题,太浪费人家时间了。
考切尔在法诺簇领域相当有建树,这方面对宋河来说还很陌生,只接触过只言片语,但刚刚解题时,显然法诺簇是打开邓浦和题目的钥匙。
怎么显然的?
别问,问就是伟大数学家的直觉!